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~Results are represented of an experimental computational determination�9 ~,he 
temperature dependence of the effective .heat conduction coefficient of a :glass 
plastic and analysis is g~uen of the reliability of the data obtained by:using 
computational experiments and pl:anning of 'the temperature measurements. 

C~refully analyzing and giving a foundation to the reliabi~it~of the:mesults being ob- 
tained is necessary when .conducting experimenta~l-computational thermophyslcal investigations 
based on application of'the inverse problem method to process the experimental information. 
To ~this end a .combination of computational experiments simulating the different conditions 
for performing the investi:gations ~(see [i], say) and the optimal :planning of the temperature 
measunements can be used wherein the quality of the measuring .scheme [2] realized in the 
experiments can be exposed. .Application of .the approach mentioned is examined in this paper 
in an.analysis of the .data of nonstationary thermophysicai experiments conducted :to deter- 
mine thetemperature dependence of the effective heat conduction coefficient of aglass- 
plastic on a siliconorganic binder from the solution of the inverse problem. 

The tests were ~performed in a wind tunnel with the following gas flow parameters: 
P0 = 5"105 Pa, To = 3590-4340 K, M = 6.5. The model in the form of a slab with the speci- 
men being investiga{ed arranged �9 was placed in theworking chamber ata 20 ~ angle to 
the incoming flow. Thermocouples "VR5/20 of 0,2-mm diameter, soldered at the butt�9 were 
mounted in the specimens executed in the shape of 10-n~m-thick rectangular plates .of 128 x 
170 mmat a different depth from the surface being heated. The microcomputer "Elektronika 
DZ-28" and the automatic potentiometer KSP-4 ~were used to process the primary information 
from ~he thermocouples. The error in measuring the temperature was 1.5-2%.at interior points 
of Zhe specimens. 

Experimental dataobtained for the two specimens are analyzed below. Six thermocouples 
w, ere mounted in the first at the foIlo~ing distances ~rom ~the surface being ~heated: d I = 
2.8 mm; d2 = 5.6 mm; d 3 = :8.4 mm; d~ = ii.2 m m; ds = 17..2 mm; and d 6 = 20 mm. ~our thermo- 
couples ..were in the second specimen at dl = 2.8 mm; d 2 = 8.4 mm; d 3 = 11.2 .mm; and d~ = 20.5 
mm. The ~hermocouple location was determinedbyusing x-ray diffraction. The diagram of 
the thermal sensor location in the specimens is displayed in Fig. i. The thermal diagrams 
of the experiments arepresented in Fig. 2. The �9 dependence of the bulkspecific :heat 
of a material on temperature C(T) is represented in Fig. 3a. 
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Fig. i. Diagramof the thermal sensor arrangement 
in �9 specimens. 
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Fig. 2. Results of measuring the 
specimen temperature: i) specimen 
No. i; 2) specimen No. 2; 3) X = 0 
ram; 4) 2.8; 5) 5.6; 6) 8.4; 7) 
14.4; 8) 17.2; 9) 17.7. T, C; ~, 
see. 

The inverse problem was solved by using the algorithm proposed in [3] when processing 
the experimental data to determine the temperature dependence of the heat conduction coef- 
ficient. The desired function X(T) was here represented in the form of a cubic B-spline 
with "natural" boundary conditions 

m 

~(T) : :  ~ ~,,B,,(T), ~ " ( T , ~ )  = k" (7",,,~x) = O; ( 1 )  

where the minimal Tmi n and maximal Tma x values of the temperatures were determined from the 
given boundary conditions of the first kind shaped by readings of the first and last thermo- 
couple. A search for the vector of the coefficients [ = {Xk}1 m in (i) was realized in solv- 
ing the inverse problem by minimization by the method of conjugate gradients of the rms 
functional of the residual 

j ~: Tr i' Y (A,, ~ ) - - /~  (X)12dT, ( 2 )  
l ' ~  i {) 

where N is the quantity of internal thermocouples, and T(xi, z), fi(~) are the computed and 
measured values of the temperature at the site of the i-th thermocouple installation. 

The computational experiments show [I] that the accuracy of the inverse problem solu- 
tion is determined to a considerable extent by the scheme used for the temperature measure- 
ments. Independence of the results of the solution from the magnitude of the initial ap- 
proximation to the desired parameters X given a priori in the iteration algorithm can be 
the criterion for correctness of the selection of the measuring scheme. The results of re- 
storing the dependence X(T) for different initial approximations are represented in Fig. 3 
for both the specimens under consideration. It is seen that the results of solving the in- 
verse problem obtained for the first specimen are independent of the magnitude of the initial 
approximation while this dependence is quite essential for the second specimen. It is re- 
markable that the functional (2) achieved approximately identical values, close to the mag- 
nitude of the integral measurement error in all cases during its minimization. 

It follows from the analysis performed that reliable values of the heat conduction co- 
efficient are obtained just in the first of the two experiments under consideration. Because 
of the nearness of the mutual specimen thicknesses and the laws of temperature variation at 
the point X = 0 over time for both experiments, such a situation is due to the presence of 
the thermocouple at the point X I = 2.8 mm in the first specimen. 

A parametric analysis of the accuracy of the solution of the inverse problem under con- 
sideration was performed to confirm the results and deductions obtained by the method of a 
computational experiment. The quantity of internal thermal sensors and their arrangement 
in the specimen under investigation was variated here. 

The simulation was realized in the following sequence. Boundary conditions of the first 
kind from experiment No. i were given on the specimen boundaries. Then by using the thermo- 
physical characteristics (Fig. 3a) the direct problem of heat conduction was solved numeri- 
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Fig. 3. Dependences X(T) obtained during processing of 
experimental data for specimens No. 1 (a) and No. 2 ~b) 
and assignment of different initial approximations Xk~ 
I) x(o) = 0.2 W/(m,deg); 2) 0.4; 3) 0.6; 4)0.8; dependence 
C(T). C, J/(mS.deg); T, ~ 

cally and the time-varying values of the temperature was computed at several interior points 
of the specimen. These values were utilized as initial data for solving for the solution 
of the model inverse problem to restore the temperature dependence of the heat conduction 
coefficient not known at this stage of the computations. Single-valued solvability of the 
inverse problem being analyzed can be achieved when performing measurements at one interior 
point of the specimen [5]. Starting from this, it was assumed N ~ i. The methodological 
error of the inverse problem solution was estimated from the formula 

exact e~ = (max I ~ (T) - -  ~ ~x~t  (T) I ) / ~ x  (T), T 6 {Train, Tmax], ( 3 )  

where X(T) and kexact(T) are the restored and the "exact" values of the heat conduction co- 
efficients. 

The dependence of e% on the installation coordinates for one sensor is shown in Fig. 4. 
It is seen that high accuracy of the inverse problem solution with a methodological error 
lees than 1% is assured only in the case of thermal sensor installation in a sufficiently 
narrow domain extending -4 mm near the surface being heated. 

Simulation taking account of the redundant "experimental" information was performed 
for two thermal sensors. Variation of the installation coordinates of the second sensor was 
realized for different fixed locations of the first. The errors in restoring the heat con- 
duction coefficient obtained here are represented in Fig. 4. Computations were performed 
for the identical initial approximation, equal to 0.2 W/(m'deg). Data of the simulation 
show that the main influence on the accuracy of solving the inverse problem being analyzed 
is exerted by the location of the first sensor, which should be in a zone relatively close 
to the surface being heated. The change in second sensor location here has weak influence 
on the accuracy of the inverse problem solution within sufficiently broad limits. 

Then by using the algorithm elucidated in [6], planning of the temperature measurements 
was carried out. The same initial data as in the solution of the model inverse problem were 
utilized as a priori information here. 

Solution of the extremal problem 

= arg maxdet  [M (~, L)] ( 4 )  

was realized for the locally optimal measurement plan t0 = {N, ~}, ~ = {Xi}l N, where M(~, 
l) is the information matrix. 

Computation of the information matrix was performed by using values of the response 
functions 8k(X, ~) = aT(x, ~)/ax k determined from the solutions of the boundary value prob- 
lems obtained by differentiating the conditions of the direct heat conduction problem with 
respect to X k. The set of allowable plans E was formed on the basis of results of the 
uniqueness theorem for the inverse problem under consideration [5] and was represented as 
follows: 

a =  {(N, ] ) : N ~ I ,  O < x , < b ,  i =  1,--~}. 
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Fig. 4. Dependence of the error e I on the installation coor- 
dinates of one (i) or two thermal sensors: 2) X I = 1.0 mm; 
3) 2.0; 4) 2.6; 5) 4.0; 6) 4.5; 7) 5.0. X2, mm. 

Fig. 5. Dependence of the planning criterion (detM) on ther- 
mal sensor installation coordinates: i) N = I; 2) N = 2 - 1 
sect.; 3) N = 2 -- ii sect. 

The search for the optimal plan (4) was constructed sequentially. Starting with N = 
1 and increasing the amount of thermal sensors by i, a selection of the optimal vector of 
the measurement point coordinates X was realized for each N from the condition 

: arg maxdet[M (2, %)], O < X i < b ,  i : I, N. 

R e s u l t s  o f  s o l v i n g  t h e  o p t i m a l  l o c a t i o n  s e l e c t i o n  p rob lem a r e  r e p r e s e n t e d  in  F i g .  5 
f o r  one and two t h e r m a l  s e n s o r s ,  where t he  change  in  t h e  p l a n n i n g  c r i t e r i o n  i s  i l l u s t r a t e d  
as a f u n c t i o n  o f  t h e  s e n s o r  i n s t a l l a t i o n  c o o r d i n a t e s .  For  two s e n s o r s ,  s e c t i o n s  by p l a n e s  
drawn t h r o u g h  t h e  p o i n t  of  t he  maximal v a l u e  of  t h e  c r i t e r i o n  in  p a r a l l e l  t o  t h e  c o o r d i n a t e  
p l a n e s  a r e  shown h e r e  f o r  t he  s u r f a c e  detM(X 1, X2). 

The most  i m p o r t a n t  outcome from t h e  d a t a  o b t a i n e d  f o r  t h e  measurement  p l a n n i n g  i s  t h a t  
one s e n s o r  s h o u l d  a b s o l u t e l y  be i n s t a l l e d  in a s u f f i c i e n t l y  narrow domain n e a r  t h e  h e a t i n g  
boundary  X = 0 t o  a s s u r e  h i g h  r e l i a b i l i t y  o f  t he  i n v e r s e  p rob lem s o l u t i o n  in  t h e  e x p e r i m e n t  
be ing  a n a l y z e d .  A f u r t h e r  i n c r e a s e  in  t h e  number o f  t h e r m a l  s e n s o r s  showed t h a t  two s e n s o r s  
a r e  c o m p l e t e l y  s u f f i c i e n t  in  t h i s  e x p e r i m e n t  s i n c e  t he  p l a c e m e n t  o f  t h e  second  and s u c c e s s i v e  
s e n s o r s  a t  one p o i n t  i s  o p t i m a l  f o r  N > 2. The r e s u l t s  o b t a i n e d  a r e  in  c o m p l e t e  c o n f o r m i t y  
w i t h  t h e  d a t a  o f  c o m p u t a t i o n a l  e x p e r i m e n t s  p e r f o r m e d  e a r l i e r .  

P l a n n i n g  t he  measurements  f o r  e x p e r i m e n t  No. 2 r e s u l t s  in a n a l o g o u s  r e s u l t s .  I t  i s  
t h e r e b y  p roved  t h a t  i t  i s  i m p o s s i b l e  t o  o b t a i n  r e l i a b l e  d a t a  abou t  t h e  h e a t  c o n d u c t i o n  co-  
e f f i c i e n t  in  t h e  second  e x p e r i m e n t  by u s i n g  t h e  d e s c r i b e d  a l g o r i t h m i c  s u p p o r t .  Th i s  i s  a 
consequence  o f  t h e  absence  o f  t h e r m o c o u p l e s  in  t he  X = 2 .8  mm a r e a  in  t he  second  e x p e r i m e n t .  

The i n v e s t i g a t i o n s  p e r f o r m e d  show t h a t  a p p l i c a t i o n  of  c o m p u t a t i o n a l  e x p e r i m e n t s  and 
o p t i m a !  measurement  p l a n n i n g  i s  an i n h e r e n t  p a r t  of  t h e  complex p r o c e d u r e  f o r  t he  i d e n t i f i -  
c a t i o n  o f  h e a t  t r a n s f e r  p r o c e s s e s  and p e r m i t s  a p p r o a c h i n g  t h e  q u e s t i o n  o f  r e l i a b i l i t y  o f  
t he  r e s u l t s  b e i n g  o b t a i n e d  v a l i d l y .  

NOTATION 

P0, To, M, stagnation pressure, stagnation temperature, and Mach criterion of the in- 
coming stream; d, thermocouple distance from the surface being heated; T, the temperature; 
C, volume specific heat; i, heat conduction; X, a coordinate; ~, time; N, number of thermal 
sensors; and b, specimen thickness. 

io 

2. 

, 

4. 
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DETERMINATION OF THE SOURCE IN QUASILINEAR EQUATIONS 

OF THE PARABOLIC TYPE 

V. M. Volkov UDC 517.946 

The uniqueness theorem is proven for the solution of the two-dimensional in- 
verse problem for an unknown source function dependent on the solution of the 
direct problem and on the spatial coordinate. 

We consider the heat equation in the region D(T, x0) = {x0 < x < ~, 0 < t ~ T} 

u, = u ~  + q (u, x) + f (x, t) ( 1 )  

subject to the boundary and initial conditions 

ult=o := O, xo ~ x < oo, ( 2 )  

&--i I = O, O<~t<~T, ( 3 )  
Ox x=x, 

plus the following condition on the solution at the point x = x 0 : 

ut . . . .  = ~,(t, xo), O<~ t<~ T. ( 4 )  

We assume t h a t  the  parameter  x 0 could range from zero to  i n f i n i t y .  The problem i s  to  
de termine  the  f u n c t i o n  q(u,  x) f o r  a given f u n c t i o n  ~ ( t ,  x0).  

THEOREM. Let  the  f u n c t i o n s  f ( x ,  t )  and ~ ( t ,  x0) s a t i s f y  the  c o n d i t i o n s  f ( x ,  t )  e C[O, 
-) x [0, T]), ~(t, x0) ~ Cl,~ T] x [0, ~)) and ~t'(t, x0) �9 y for t e [0, T], where u is 
a sufficiently large positive number. In addition, the consistency condition @(0, x0) = 0 
is assumed to be satisfied. 

Then the solution q(u, x) of the inverse problem is unique in the class of functions 
q(u, x) ~ CI, I ((-~, ~) x [0, ~)) satisfying the conditions 

- -  q (0, x) <~ f (x, l) ~< ~:i (t, xo) - -  q (# (t, x0), x), x 6 [xo, co), t 6 [0, TI, 

and for two arbitrary functions of this class qx(u, x) and qa(u, x) their difference q(u, 
x) = ql(u, x) - q2(u, x) satisfies the inequality 

Ilq (u, x)lI~vo.=~tR,.Ra• ~)) ~< c Ilq (u, x)ll Loo(tR,.R,I• | 
for a certain value of ~ ~ (0, I). 

Proo.___~f. The following maximum principle holds for the assumptions of the theorem. 

Maximum Principle. If the conditions of the theorem are satisfied, then u(x, t) 
C2'I((0, ~) • (0, T]) N C([0, -) x [0, T]) N L~((0, ~) x (0, T]) and the solution of the 
problem (i), (2), (4) satisfies the condition 0 g u(x, t) ~ ~(t, xo) , (x, t) e D(T, x0). 

Furthermore suppose that there exist two solutions of the problem (I)-(4): {u1(x, t), 
q1(ul, x)} and {u2(x , t), q2(u2, x)}. Then, putting x = x 0 in (i), we obtain the relation 

q(~;(t, xo), xo)= ~(t ,  xo)--[(Xo, t)--u=,l,,=x., ( 5 )  
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